
Does Increased Regularity Lower Complexity? 

By Arthur G. Werschulz* 

Abstract. Intuitively, the more regular a problem, the easier it should be to solve. Examples 
drawn from ordinary and partial differential equations, as well as from approximation, 
support the intuition. Traub and Woiniakowski conjectured that this is always the case. In 
this paper, we study linear problems. We prove a weak form of the conjecture, and show that 
this weak form cannot be strengthened. To do this, we consider what happens to the optimal 
error when regularity is increased. If regularity is measured by a Sobolev norm, increasing the 
regularity improves the optimal error, which allows us to establish the conjecture in the 
normed case. On the other hand, if regularity is measured by a Sobolev seminorm, it is no 
longer true that increasing the regularity improves the optimal error. However, a "shifted" 
version of this statement holds, which enables us to establish the conjecture in the semi- 
normed case. 

1. Introduction. We investigate the relation between regularity and complexity. In 
this Introduction, we use words such as algorithm, information, cardinality, and 
regularity without definition. They are rigorously defined later. 

Based on a variety of examples, Traub and Wozniakowski [6] conjectured that, in 
general, as the regularity of a class of problem elements increases, the complexity 
decreases. In this paper, we consider linear problems. We measure regularity by a 
Sobolev norm or seminorm. We prove a weak form of this conjecture and show that 
no stronger statement is possible. 

To fix ideas, we consider several examples. 
Example 1.1. Consider the solution of the two-point boundary-value problem 

(1.1) - u" =f in(0,1), u(O) u(l) = 0, 

where the Hr(O, 1)-norm of f is bounded by unity: 

(1.2) E J Y f(i(x)j2dx , 1. 
1=0 0 

Consider an algorithm 9p using information of cardinality at most n, and define the 
error e( p) to be the worst-case error (in the H'-sense) taken over all f satisfying 
(1.2). Let 

(1.3) e(n,r):= inf e(qp) 
9, 
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be the minimal error of all such n-evaluation algorithms p whose input fuictions f 
satisfy (1.2). In [7], we showed that 

(1.4) e(n,r) = 0(n (r as)) asn -x 

where we use Knuth's 0-notation 

(1.5) f1 = 0(f2) ifff, = 0(f2) andf2 = 0(fl). 

If comp(e,r) denotes the complexity of finding an e-approximation, then (1.4) 
imp lies 

(1.6) comp(e,r) = 1 asc -O. El 

The next four examples are taken from [6]. In these examples, the data consisted 
of all f EE Hr( I) (where I was a bounded real interval) .whose H r( I )-seminorm was 
bounded by unity: 

( 1 .7) iff Ir) ( X )I 2dx< . 

For an algorithm (p using information of cardinality at most n, e(qp) was defined to 
be the L2-error taken over all f satisfying ( 1.7), and 

(1.8) e(n,r):= inf e((p) 

was the minimal error of all such n-evaluation algorithms qp whose input functions f 
satisfy (1.7). Once again, comp( c.r) denotes the complexity of finding an e-ap- 
proximation. 

Example 1.2. For the approximation problem, 

(1.9) e(n,r) = 0(n -r) asn -- oc, 

so that 

(1.10) comp(e,r) =((-)) e ) sE-0. ) 

Example 1.3. For the heat equation in a thin rod of length 7r with initial data f 
solved out to time t = to, 

(1.11) e(n,r) = e-(" 1)2(n + I)r, 

so that 

(1.12) comrp(c,r) = 0( In as O-0. C 

Example 1.4. For the Laplace equation on the square (0, 7) x (0, iT) with boundary 
data 

(1.13) u(O,y) = u (r,y) = u(x,O) = O forx,y E [0, 77, 
u (x,IT) = 1 (x) for x e-[,7 

and considering the solution to be u( .,yo) for a fixed y( e (0,iT), 

(1.14) e(n,r) = 1 sinh(n + I)Yo - e-(n+ )(-ylo)(n +? )r as n - oo 
(n + I)r sinh(n ? 1) r 
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so that 

(1.15) comp(e, r) =( lIn I) ase - O. C 

Example 1.5. For the hyperbolic differential equation 

(aui au 

(1.16) ( -a - = aX (x E R, t > 0) 
U(' O) =f 

solved out to time t = to 

(1.17) e(n,r) = (n + 1) r, 

so that 

(1.18) comp(e,r) =(e1/r) ase 0. 5 

(See Chapter 6 of [6] for a fuller discussion.) 
Note that, in all the examples above, s > r implies that 

(1.19) lim e(n,s) =0 
n-OO e(n,r) 

and that there is a constant K which is close to unity such that 

comp(e,-s) 
lim sup c K 

E-.0 comp(e,r) 

Hence, as the regularity increases, the complexity decreases, in the sense that it gets 
no worse. Traub and Wozniakowski [6, p. 147] asked whether more regular problems 
always have lower complexity. We add the question as to whether (1.19) holds in 
general. 

In order to establish the conjecture of [6], it is necessary to first determine what 
happens to the nth minimal error e(n,r) as r is increased. Let s > r. We show that 
for any problem, there exist nonnegative integers n* and n*, with n* < n*, such that 

(1.20) lim >e(n + n*,s) 
n*we(n + n*,r)=0 

in both the normed and seminormed cases. In this sense, additional regularity always 
helps. However, (1.20) tells us nothing about the more fundamental question of 
whether (1.19) holds. We now distinguish between the normed and semuinormed 
cases. In the normed case, n* = n* = 0, so that (1.19) holds; we also have the 
nonasymptotic result that 

(1.21) e(n,s) < e(n,r) forn > 0. 

In the seminormed case, (1.20) implies the desired result (1.19) when the problem is 
"hard", and so the "shift" is irrelevant. In general, however, we cannot say that 
(1.20) implies (1.19); in fact, we are able to construct a special counterexample in the 
seminormed case for which 

(1.22) lim e(n,s) = 0 
n-oo e(n,r) 
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(and the limit can blow up arbitrarily fast). Note that this counterexample is an 
"easy" problem, especially constructed for this purpose; we know of no naturally- 
occurring problem for which (1.22) holds. 

We are now able to use (1.20) and (1.21) to establish a weak form of the original 
conjecture: in both the normed and seminormed cases, there is a constant K, close 
to unity such that 

(1.23) im sup comp(, s K K 
,--.O comp(e-,r) 

On the other hand, this is essentially the sharpest statement possible: in both the 
normed and seminormed cases, one can always construct a problem for which 

(1.24) limsup comp(,s )> K 
F-O comp(e,r) ' 

where K2 is close to unity. In other words, increasing regularity improves complex- 
ity, but not as dramatically as the optimal error is improved in the normed case; it is 
not true in general that 

(1.25) lim comp(c,s) = 0 
F-*O comp(E,r) 

We now outline the contents of this paper. In Section 2, we develop our 
terminology and introduce some known results on optimal algorithms. In Section 3, 
we prove a useful theorem on ratios of eigenvalues. In Section 4, this theorem is 
applied to the normed case to give results on optimal error. We discuss optimal error 
in the seminormed case in Section 5. The results in Sections 4 and 5 are translated 
into results on complexity in Section 6, where we establish the weak form of the 
conjecture and show that no stronger version is possible. Finally, we pose some open 
questions in Section 7. 

2. Preliminary Concepts. In this section, we introduce some terminology from [6], 
which will more precisely define some of the terms mentioned in the Introduction. 
We also mention some results from [6] concerning optimal algorithms. 

Let S,, G2 be (real or complex) Hilbert spaces. A problem is defined by a bounded 
linear solution operator S: To - T2, where -) c ? t is a set of problem elements. For 
our purposes, we may assume that there is a surjective restriction operator T: 

' 3 (T3 a Hilbert space) such that 

(2.1) 'To={fGE I I Tf 1). - 

For instance, if '573 = , and T = I (the identity map), S0 becomes the unit ball B.F1 
of C,. (In the sequel, BH will denote the unit ball of any Hilbert space H.) 

In what follows, we let 2 c RP be a smooth bounded domain. We use the 
standard notation and terminology for multi-indices, as well as Sobolev norms, 
seminorms, inner products, and spaces; see, e.g., [2]. 

Remark 2.1. Let q3 = Y = Hr( 2) and T = I, so that 

(2.2) qo = BHr(2) = {f E Hr(Q): lf 1). 

This is the setting for the normed case as discussed in the Introduction. On the other 
hand, choose IF , H r(), m to be the number of p-dimensional multi-indices of 



DOES INCREASED REGULARITY LOWER COMPLEXITY? 73 

order r, and .T3 to be the (closed) subspace of L2(Q)m which is the range of the 
transformation T which maps a function in Hr(i2) to the vector of its partial 
derivatives of order r. We then find that 

(2.3) o = ?qHr(Q):= (f E Hr( 2): fir I 1). 

This is the setting for the seminormed case. (See Section 6.) O 
In order to clarify our terminology, we now introduce 
Example 2.1. Choose Y15 = Hr(Q) where r > -1, 2 = Ho'(), and iT to be the 

unit ball of H r(52). The solution operator S: 6-0 q2 is defined by letting Sf be the 
solution to 

(2.4) V(Sf )Vv = ffv V v e Ho( ) 

i.e., u = Sf is the weak solution to 

(2.5) -Au=f in2 

u=O onaQ, 
see e.g. [2]. El 

In order to approximate the solution Sf for f E 'o using a finite amount of 
resources, we must use only a finite amount of information. Here, an information 
operator is a linear operator 6X: Do -* 134 (where i0 c D. c C, and ~L4 is a Hilbert 
space) whose cardinality #*L is given by 

(2.6) #%:= codimker9. 

From Chapter 2 of [6], #6X = n if and only if there exist n linearly independent 
linear functionals L Il..., Ln on WI such that 

(27) 6f = [Llf ... Lnf ]T Vf E %'T0. 

Example 2.1 (continued). One important information operator for this problem is 
given by 

(2.8) n, f:= [|ff1 ... fsf] 

where sn,..., s,' form a basis for a space n C Ho(u) of piecewise polynomials of 
degree r, and the sequence { }),,l arises from a quasi-uniform triangulation of U. 
(Of course, if p > 2, we must make some adjustments to guarantee that S. C Ho'(Q). 
For more details, see [2] and [7].) 0 

An algorithm using 'L is then a (not-necessarily-linear) mapping qp: %(St) -* 1Y2. 

(Hence the only information such an algorithm may use about the problem element 
f E No is 6?f.) The (worst-case) error e(gp) of such an algorithm p using 6L is then 
defined by 

(2.9) e (p)):= sup ISft-T (6f )II. 

Example 2.1 (continued). Define n,, to be the finite element algorithm, i.e., 

n ( 6X,, f ) E ,,, satisfies 

(2.10) |V4n (tnf vsn fsJz (1 i< n). 
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T hen ),, uses }(, and 

(2.11) e(c,.) = 0-(rn I)/p) asn x-* 0. 

(See [2], [7].) C 
We seek optimal error algorithms p* using A whose error is small as possible, i.e., 

such that 

(212) e(T*) = inf e(q)), 

the infimum being over all p using I)X. The search is made easier by the fact that 

(213) inf e(g) =r('X,S,5(,), 

where the radius of information is given by 

(2.14) r(@,S'+0):= sup jlSzjl; 
z E k crl: r .) 

see Chapters 1 and 2 of [6]. 
Example 2.1 (continued). The finite element algorithm zp,, is (to within a constant 

factor independent of n) of optimal error among all algorithms using ),,; see [7]. C 

Now that we are able to determine the optimal error for any algorithm using 
information 9)L of cardinality at most n, the next matter to determine is which such 
information is "most relevant" in that it yields optimal algorithms with the smallest 
error. That is, we wish to find an nth optimal information operator OA,,, i.e., an 
information operator of cardinality at most n whose radius equals the nth 
minimal radius of information: 

(2.15) r(v),,S,tO) = r(n,S,''TO):= inf r(-X,S,VTO). 

We will mainly be concerned with the case where 

(2.16) lim r(n,S,oT)) = 0, 

so that there exists a convergent sequence of algorithms, each of which uses 
information of finite cardinality. By Corollary 2.5.1 of [6], (2.16) holds if and only if 
K:= STP is compact, TP being a pseudo-inverse of T (see p. 34 of [6]). Let 

XI > X2 > ... > 0 be the nonzero eigenvalues of K*K, the asterisk denoting 
Hilbert space adjoint. (If only a finite number r of nonzero eigenvalues, formally set 
xA, Ofori>r.)Let 

(2.17) n* = n*(T,S):= dim[kerT/(kerTfn kerS)] 

denote the problem index. Then Theorems 2.3.2 and 2.5.3 of [6] yield 

00 if n <n*, 

(\2.18) r(n,S,in) = j n' +I if n > n*. 

Remark 2.2. In the normed setting . = BH'(Q), we have T = I, so that Tt = I, 
and hence n* = 0. In the seminormed setting Fo =6'HM'(Q), we will show that 
n* = dim(S(Pr ,(Q))), where P,(Q) is the space of polynomials of degree t over the 
region U. C 

Example 2.1 (continued). In [6], we showed that 

(2.19) r((5.,S,S0) = e(r(n,S,6JO)) = e(n (r )/P) asn oo. 
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Hence, PtI is (to within a constant factor, indep ndent of n) an n th optimal 
information for the problem (2.4). 0 

3. An Eigenvalue Comparison Theorem. In the previous section, we saw how the 
minimal radii of information were related to the eigenvalues of a compact linear 
operator on a Hilbert space. In this section, we will establish a result concerning 
eigenvalues of products of compact linear transformations. This result will be used 
to establish results on optimal error for the normed and seminormed cases in 
Sections 4 and 5, respectively. 

Let X and Y be Hilbert spaces, and let E: X -- Y and A: Y -- Y be compact 
linear transformations, with A selfadjoint and nonnegative, i.e. 
(3.1) A =A* and (Ay,y) > O fory e Y. 

Let X,,(K) denote the nth largest eigenvalue of the nonnegative selfadjoint, compact 
linear operator K on a Hilbert space. In this section, we will prove 

THEOREM 3. 1. Either 
(i) A is of finite rank, in which case there is an integer nO > 1 for which 

Xn(E*AE) = Xn(A)-= forn > n0, 

or 
(ii) A is not of finite rank, in which case 

lim Xn(E*AE)= lim Xn(A)=0 
n -oo n -oo 

and 

lim xn(E*AE) 0 
n -oc An(A) 

Proof of (i): Let rank(A) = no - 1. Then A has at most no - 1 nonzero eigenval- 
ues, so that An(A) = 0 for n > no. But 

rank(E*AE) < rank(AE) < rank(A) = no - 1, 

so that E*AE has at most no - 1 nonzero eigenvalues, i.e., ?n(E*AE) - 0 for 
n>n0. 0 

Before proceeding to prove (ii) of Theorem 3.1, we must set up some machinery 
and prove two lemmas. Let y, ,Y2. . . be an orthonormal family of eigenvectors for A, 
i.e., Ay. = XA (A)yj, where XI(A) > X2(A) > * > 0 because A is not of finite rank. 
Let 

(3.2) Mn=sp (Y 1 Y =sP Y}, n 1 3 ekerA. 

LEMMA 3.1. codimE 'Mn < n. 

Proof. Let Ln = X/sp{E*y)>ni = sp{E*y1,..., E*yn)? in X. Then Ln =- iMn, 
since 

x ELn x I (E*yl,..., E*Yn)4} Ex I (ys Y-I Yn} 
Ex 

E Mn x E E 'Mn. 

So codimE- 'M,, codimLLn n. 
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LEMMA 3.2. Let 

p,,= sup IlExll. 
Ev : eAl,, 

x-IE 'kerA 

Then 

X,1+, (E*AE) 

X1+I(A) 

Proof. Since kerA is a closed subspace of M,, E- kerA is a closed subspace of 
E- 'M,,. Hence we have a direct sum decomposition 

(3.3) E-'M,, = E-'kerA e [E-'M,,/E-'kerA]. 

Given x E E- 'M, lixii < 1, write 

(3.4) x = xI + x2 (xI E E-E'kerA, X2 E E-'M,,/E- ' kerA), 

and note that llx2ii < lxII < 1. Then AEx, = 0 implies 

(3.5) (E*AEx,x) = (E*AEx,,x,) + 2(E*AEx,x,x,,) + (E*AEx2,x, ) 

= (E*AEx2,X2,) = (AEx2,EX2). 

If Ex2 = 0, then 

(3.6) (AEx2,Ex2) = 0 < X,,+,(A) 0 = X,1+(A)l1Ex2ll2, 

while if Ex, * 0, sety = Ex2/llEx2l1 to find 

(3.7) (AEx2,Ex2) = (Ay,y)IIEx2 12 < X, + I (AA)11 Ex2 112, 

since y E M,, and IIlYI < 1 implies (Ay,y) < X,+ ,(A). In either case. (3.6) or (3.7) 
yields 

(3.8) ( AEX2, EX2) < X,,+,(A )IIEX2 112. 

Now Ex2 E Mn, x2 1 E- kerA, and lx21 1 1 yield 

(3 .9) 11 Ex2 11 <1 ph,. 

So (3.5), (3.8) and (3.9) yield 

(3.10) (E*AEx,x) < Xn+,(A)pn2. 

Since the choice of x E E- 'M,, n BX is arbitrary, we have 

(3.11) sup (E*AEx,x) <n+ (A)pn2. 
c E -'Ml' 
IIxII< I 

Since codimE- 'M,, < n, we use the Courant minimax theorem to find 

(3.12) sup (E*AEx,x) > inf sup (E*AEx,x) = X, +I(E*AE). 
x G E-'M 

LCK x = 
x E E | Mn ~~codim L < n7 Ix- 11< I II.,II,< I 

The lemma follows from (3.1 1) and (3.12). 0 
We are now ready to complete the 
Proof of Theorem 3.1(ii): Since A and E*AE are compact, the first statement is 

immediate. Now M, D M2 D M3 D ... and the definition of pn imply that 

(3.13) PI > pI > PI > ... > ? 
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Hence there is a p > 0 such that 

(3.14) p = lim Pn. 
)? -- 00 

So Lemma 3.2 yields 

(3.15) 0 < lim n(E*AE) < p2 
II- 0 Xn(A) 

We need only show that p = 0. 
To this end, we choose a sequence (en > O)n l> such that En 0 as n oo, and a 

sequence(x,* E [E-'MI/E-'kerA] n BX)}>, such that 

(3.16) IIExn*1 < pn < IlEx*11 + e, for all n > 1. 

Then jIx*II < I implies that x* is weakly convergent (through some subsequence, say 

{nk)k) , of indices) to some x* E BX(Theorem VIII.4.2 of Schechter [5]): 

(3.17) x* .x ask -oo. 

Moreover, the compactness of E implies that EX* converges strongly to Ex* as 
k -3 oo (see Theorem 5.1.1 of Friedman [3]). This implies that 

(3.18) lim IIExk*II = IIEx*II, 
k -oo 

and so (3.16) and (3.18) yield 

(3.19) p = IIEx*1I. 
We first claim that x* I E-'kerA. Indeed, let x E E- kerA. Then x"** x* as 

k xoo andxA 1 E- lkerA imply 

(3.20) (x*,x) = lim(x *,x) = 0. 
k n 

Since x E E- kerA is arbitrary, x* 1 E- kerA, as claimed. 
We next claim that x* E E- kerA, i.e., Ex* E kerA. Indeed, since (kerA)' has 

the orthonormal basis {yJy)> 1, it suffices to show that 

(3.21) (Ex*,yj)=0 foralli 1. 

Given such an index j, choose ko such that nk > j. Then for any k > ko, we have 

n,,A>Vj, so that x * ME E- Mn implies 

(3.22) (x*A,E*yJ) = (EXnk,yj) = 0. 

By (3.17), we thus find 

(3.23) (Ex*,y1) = (x*,E*y1) = lim (x E*yj) = 0. 
fl) 00 

Since the indexj > 1 was arbitrary, it follows that x* e E- kerA, as claimed. 
So x* E E- l kerA fn (E-'kerA)' = 0, implying 

(3.24) p = IIEx*II = 0, 

completing the proof of the theorem. O 
In order to consider the seminormed case, we will need to know whether it is true 

that 

(3.25) lim ( E*AE) O 
nl-*0 Xn?m(A) 
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for some positive integer m? In general, the answer is in the negative whenever E is 
not of finite rank. 

Indeed, let x, x2,... E X denote orthonormal eigenvectors of E*E corresponding 
to the eigenvalues e2> ? e2.> > 0, so that 

(3.26) E*Ex,, 
= e2xn (n > 1) and (xn1,x,1) = 'imn (m,n ?1). 

Let 

(3.27) Y,l := Ex,1/E,1 (n >1), 

so that 

(3.28) (Y,.1y,) = (E*ExM,,x) = If= SI (m,n > 1), 

i.e., YI,Y2.*.. form an orthonormal basis for 

(3.29) M:= sP{Y,1)n,l. 

Now define A: Y -. Y as follows. Let a, > a2> * ... > 0, with lim n la, = 0 be 
given. For any y E Y, there exists a unique choice of scalars 71 ,2,... and Yo E M 
such that 

00 

(3.30) y= +Yo 
,, = I 

Then let 

(3.31) Ay:= nanYn 
?1 = 1 

We then see that Yi.Y2'... are orthonormal eigenvectors of A corresponding to the 
eigenvalues a,, a2. so that 

(3.32) Xn(A) = aCn 

Moreover, let x E X, so that there exists a unique choice of scalars JOJ21,... and 

xo E kerE*E such that 
00 

(3.33) x = xn + xo; 
?1 = 1 

we claim that 
00 

(3.34) E*AEx= E (nn n; 

which implies that x,,x 29... are orthonormal eigenvectors of E*AE corresponding 
to the eigenvalues aE2 a2 >* > 0, so that 

(3.35) 2n(E*AE) = a 

Indeed, let x E X have the representation (3.33). Then Exo E M', since for any 
index n > 1, 

(3.36) (ExO,Yn ) = 1 1 
En Ell 



DOES INCREASED REGULARITY LOWER COMPLEXITY? 79 

Thus (3.33) implies that Exo E M' in the representation 
00 00 

(3.37) Ex= nEXn + ExO = ? 'nYt + Exo, 
I1= t1 = I 

and thus (3.30) and (3.31) imply 
00 00 

(3.38) AEx = E (,1c,1a??Yn E ( nanExn1 
811=1 t1CI 

So 
00 OG 

(3.39) E*AEx = a E*Ex= a E2x 

t n = I n I 

as claimed. 
We now show that not only is (3.25) false in general, but the limit can be any 

positive number, or can go to infinity arbitrarily fast. 

THEOREM 3.2. Given a compact linear E: X -- Y, a positive integer m, and a 
sequence 1 < 112 < *- of positive real numbers, there exists a compact, linear, 
nonnegative, selfadjoint A: Y -- Y such that 

AXn(E*AE) 

I\n+m(A) 
n 

for all sufficiently large n. Hence, for any ,i E [0, x ], there exists an A for which 

X\n(E*AE) 
lim =n+m(A) 

and if ,i = x, the limit can go to infinity arbitrarily fast. 

Proof. Let E, (jin)n?> , and m be as in the statement of the theorem. Let E*E be as 
in (3.26), and let A be defined by (3.30), (3.26), where now 

k-- I 2 
CIrnI] 

I n - I 
(3.40) a,, H k:==k [ -j,i=n-km). 

Then there is a positive integer no such that (3.32) and (3.35) hold for all n > no. 
Hence for n > no, let k = [(n - 1)/mi andj = n - km to find 

x,1(E*AE) a~n-n = akm+JEkm+J (3.41) Xk+rmn( ) Ann+,m ( = + l ) Ln+ 

An+M(A) an+rn (k+I)mn+j 

proving the first statement. The second statement follows by taking It E (0, x ] to 
be the limit of the An as n -x o. To make the second statement hold for - = 0, take 
y e (0,1) and let 

(3.42) an:= yf 

Then (3.32) and (3.35) hold for all n > 1. So 

(3.43) (AE) -mc2 0 as n -x . a 
X\n+m(A) an+m 
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4. Regularity and Optimal Error in the Normed Case. We now consider the case 
where we have Hilbert spaces , and 'T2 where there is a compact transformation 
E: '', -' so that when E is injective, E(~''T) may be identified as a subspace of ~'.T 
which hias more "regularity" than the space ' l. Let i S( and ( denote the unit balls of 
`T and t'Fp respectively. Suppose that S: ' 'T2 is a bounded linear solution 
operator; then we define the solution operator S: .V1' - by S = SE. We now 
consider the problems given by S with isTo and S with is(?. 

Our first result shows that for the normed case, replacing the problem (S,.'(,) by 
the problem (S.`t()) does not increase the nth minimal radius beyond a factor of j1Ell. 

THEOREM 4.1. For all n > 0, 

r(n,S.8(> jjIEjjr(n,S,8(). 

Proof. If E = 0, then S = SE = 0 and IjEjI = 0, so that the inequality reduces to 
0 < 0. We now suppose that E m 0. Let A be an information operator on ~'i, of 
cardinality at most n. Define an information operator A on ':i, by -i.:= A E. Then 

< n, so that 

(4.1) r(n.si)) ( t) = sup ki?zll. 

Let z e ker! n Set v E/II E II. Then 

(4.2) Y= E z = 1-Ercz = 0? 

so thaty E ker;i n lT (. So 

(4.3) jiSzll = IISEzjj = IjEjjjjSyll < IIEII sup IjSyll = IIEIIr( )i S,1I7)). 
Y E ker: )l n 

Taking the sup over all such z and using (4.1), we have 

(4.4) rnS'',)< IlEllr(Ot,,'T(,). 

Since A is an arbitrarv information operator on tF of cardinality at most ri(, we 
may take the inf over all such -)Z to complete the proof of the theorem. C 

Note that this result is nonasymptotic, holding for all n1 > 0. We now give an 
asymptotic result which says that in the limit, replacing (S,'-)) with (S,') helps 
beyond any positive factor, no matter how small. 

THEOREM 4.2. Either 
(i) S is bounded but not compact, in which case there exists p > 0 such that 

lim r(n,S,T(,) =p and lim r(n,.,')i,) = O, 

or 
(ii) S is offinite rank, in which case there is an integer n0( such that 

r(n,S,to) = r(n,S',%) = 0 forn > n(, 

or 
(iii) S is compact, but not of finite rank, in which case 

r ( n, ~ ~ 
lim r(n,S, )= lim r(n,S,0 = O and i 0. 

s1-X s1-orc 
nS 

J-oo r ( n, S, J0 ) 
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Proof. For part (i), let S be bounded and noncompact. Then Corollary 2.5.1 of [6] 
implies that there is a po > 0 such that r(n,S,%O) > po. Since r(n,S,()) is monoton- 
ically nonincreasing, the first statement in (i) follows. On the other hand, S bounded 
and E compact imply S = SE is compact. Thus Corollary 2.5.1 of [6] yields that 
r(n,S, o) converges to zero. 

For parts (ii) and (iii), let X = C,, Y = q2' A = S*S. Then A = A* > 0 and E are 
compact. Since the restriction map is the identity, it has trivial kernel, and so the 
indices of the problems (S,%E) and (S,?3) are zero. Thus (2.18) yields 

r(n,qS,q ) = - '2,l(A) and r(n,S,A0 ) = - 12,(E*AE). 

The result now follows immediately from Theorem 3.1. O 
We now show how increased regularity improves optimal error behavior in the 

normed case. Consider a well-posed (i.e. bounded) linear problem S defined on 
Hr(Q), where Q is a smooth bounded region in RP. Thus there is a Hilbert space Z 
such that S: H(I(Q) -- Z is a bounded linear operator. We pick s > r and let E: 

H'(2) -- H'(S) denote the inclusion injection, i.e., Ef:= f for f E HW(Q). Setting 
S := SE (i.e., S is S restricted to Hs(Q)), we let 

(4.5) e(n,r):= r(n,S,BH'(Q2)) 

and 

(4.6) e(n,s):= r(n,9,BHs(Q)) 

denote the minimal errors of algorithms using information of cardinality at most n 
when the admissible inputs are the unit balls of H'(Q) and Hs(Q), respectively. 

THEOREM 4.3. For all n > 0, 

e(n,s) < e(n,r). 

Moreover, precisely one of the following statements holds: 
(i) S is bounded, but not compact, in which case, there exists E > 0 such that 

lim e(n,r) =E 

while 

lim e(n,s) -0, 

or 
(ii) S is offinite rank, in which case there is an integer nO such that 

e(n,r) = e(n,s) = 0 forn > no? 

or 
(iii) S is compact, but not of finite rank, in which case 

lim e(n,r) = lim e(n,s) = 0 and lim (n's)0. 
,, ---* oo _* s OC n - oo e(n,r) 

Proof. Let C, = H r( i) and 'Y1 = Hs(Q), so that qo = BH r(Qi) and C - BHs(g2). 

Since 11 l<r <11 Ils we have IJElI < 1. Hence the first statement follows from 
Theorem 4.1. By the Kondrasov lemma (see, e.g., p. 114 of [2]), E is compact. Thus 
the second statement follows from Theorem 4.2. 0 
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Thus either the problem can be solved exactly using a finite amount of informa- 
tion (case (ii)) or increasing the smoothness of the problem by assuming the 
existence of additional derivatives improves the optimal error by more than any 
fixed constant factor as n -s o (cases (i) and (iii)). 

Remark 4.1. If we replace Hr(Q) and HS(Q) in (4.1) and (4.2) by Ho(Si) and 

Hi('(Q), Theorem 4.2 still holds, since the inclusion injection EO: Hi(i2) -+ H&o(Q) is 
compact for r < s. El 

5. Regularity and Optimal Error in the Seminormed Case. We now consider the 
case when regularity is measured by a Sobolev seminorm (as was the situation in the 
examples studied in [6]). In this section, we show that Theorem 4.3 does not hold 
when the unit balls BH (2) and BH'(Q) are replaced by the unit semiballs 13H (a) 
and 'f'rHS(S) (see (2.3)). In fact, we show that there is a penalty associated with 
increasing the regularity in this manner, and that this penalty can be arbitrarily big. 
On the other hand, we are able to show that a slight modification of Theorem 4.3 
does hold in the seminormed case, and we give sufficient conditions for the original 
version of this theorem to hold in this case. 

We now let Z be a Hilbert space and let S: H r( a) -_ Z be a bounded linear 
solution operator, where Q c RP is a smooth, bounded, simply connected region. We 
consider the problem defined by S and t I)'H : r(SH ). 

It will be useful to write ~'8T in terms of a restriction operator T. Let ,. 
denote the multi-indices ) in p variables such that 1y1 = r, so that 

(5.1) ) ( r ) I 

Consider the Hilbert space L,(i) ", and define a subspace Vof L2(Q)i" by 

(5.2) [g, ... 
g,] T E V iff 3f E Hr(2) :D f=g, (I < i < m). 

LEMMA 5.1. V is closed itn L2(2) ". 

Proof. Since Q is simply connected, g E V if and only if g satisfies a set of q 
equations in H '(Q) of the form 

(5.3) a,g, - akg, = o. 

where i,j, k, I are related by the relation 

(5.4) a1D"J = aAD, 

which expresses the equality of the mixed partial derivatives of the function f for 
which (5.2) holds. Hence there is a bounded linear operator L: L2(i)'P' -- H- I(Q)q 
such that V = kerL, and so V is closed. 0 

Hence V is a Hilbert subspace of L2(2)"'. We now define T: H r(g) - V by 

(5.) Tf:= [DAf .. DP"nf 

By (5.2), T is a surjection. 
In what follows, it will be useful to have another characterization of the index of 

the problem. 

LEMMA 5.2. The index n*(T,S) of the problem (S, ?o) is given by 

(5.6) n* = n*(T,S) = dimS (kerT). 
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Proof. First note that 

(5.7) ker(SIkerT) = ker T n kerS. 

Since dim ker T is finite, we let M = ker Tin the equation 

(5.8) dim S(M) + dim(kerSIM) = dimM. 

Using (5.7) and (2.17), we find 

(5.9) dim S(ker T) = dim(ker T) - dim(ker SlkerT) 

= dim(kerT)-dim(kerT nl kerS) = n*(T,S). O 

In order to proceed, we let P,(02) denote the space of polynomials of degree t on 
SI. (Note that Pr (Q2) is the kernel of T given by (5.5).) Let 

(5 .10) Hr( Q2):= HrQ )/r_ I ( Q) 

denote the orthogonal complement of Pr- 1(Q) in Hr(12), so that 

(5.11) fe Hr(Q) ifff e Hr( ) and (f P)r = O Vp C Pr- 1(Q) 
where (-, )r is the inner product which yields the 11 llr-norm. By Theorem 3.1.1 of 
[2], the Hr( Q)-seminorm I Ir is a norm on Hr(Q), equivalent to the usual quotient 
norm rj Ir on HI(Q) given by 

(5.12) f11 r pinf 
I 

P f+PI I r 

The problem (S,3Hr(QH)) now induces a new problem (S,tO) by letting S: 
Hr(fl) -* Z be defined by 

(5.13) Sf:= Sf forfe fI-(Q) 

and letting 

(5 .14) go: BHF( Q ) = o n Ht Q) 

LEMMA 5.3. r(n + n*,S,JO) =r(n,S,go 

Proof. We first let %: HT(g) --R+' be a linear information operator of cardinality 
at most n. Define 't: H r(s) --,R" by 

( 5. 1 5) [f Sf] 

wheref e HT(2) and Ae Pre (Q) are uniquely chosen so that 

(5.16) 
f 

=f + A 

Then Lemma 5.2 yields 

(5 .17) #t<#X+ dim S(Pr- 1 (Q)) < n + n*. 

We claim that f E ker% n 'F3 implies f E kerD, n 'fl and Sf = Sf. Indeed, given 
such anf, writef = f + p as in (5.16). Thenf e 60 implies 

(5.18)~~~~~1 11fl2 < 11 112 + 11 

A 12 = Itlfr 1 12 
so that!f E o0. Moreoverf e ker9 implies 

(5.19) j=0 and Sfi=0, 
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i.e.,fe ker'LXand 

(5.20) Sf=Sf+Sp=Sf=Sf, 
proving the claim. 

From (2.14) and (5.17), we find 

(5.21) r(n + n*,S,O) < r(6)L,S,%) = sup liSf II 
fe-ker .nt n .( 

< sup = r S, o 
je ker9 nl '8) 

Taking the infimum over all bn of cardinality at most n, we find 

(5.22) r(n + n*,S,'.'o) < r(n,S,''o). 

In order to prove that the inequality (5.22) is an equality, we consider an 
(n + n*)th optimal information for (S,%0). By (2.4.12) of [6], this information has 
the form 

(5.23) ,,,f= n 

where 

(5.24) ker' * = (ker T n kerS ) ED (ker T) 

and there is a linear transformation L on V, of rank at most n, such that 

(5.25) 'X,= LT. 

Let 1I: Hr(i2) + Pr- i(Q) denote the orthogonal projector, so that Il = If in 
(5.16). Claim there exists an invertible n* x n* matrix M such that 

(5.26) X* = MSH. 

To do this, we first show that 

(5.27) kerl* c kerSrI. 

To see this, letf E ker9L*. By (5.24), we may write 

(5.28) f='f +f2 (f' e kerTn kerS,f2 e (kerT)'). 

Then f, E ker T impliesf, c Pr- (1iQ). Since LI is a projection onto Pr (Q), we have 

Ilf, = fl. Sincef, c kerS, we have 

(5.29) Slf, = Sf, = 0. 

On the other hand,f2 e (kerT) = HT(Q) implies that 11f2 = 0. So 

(5.30) SIf2 = 0. 

Hencef e kerSLI, proving (5.27). Since ker6L* c kerSEt and 

(5.31) codimkerL* = n* = dimrangeSrl = codimkerSfl, 

Lemma 2.2.1 of [6] yields (5.26), as claimed. 
So 

(5.32) GX [nnf] 6 = 
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where f and p are given by (5.16) and O,f = %J because p E kerT implies 
LTf = LTf. 

We now consider the information operator 'Z for the problem (S,9O). Clearly 
#9%,, < n. We claim that kerOL nl % c kerOL+1* f %. Indeed, letfe ker Ltn n 
)T. Then f c =Hr(Q) n 60 implies fe 'Y0. Moreover f e H'(2) implies that 
p= 0 and f = f in (5.16), so thatf E ker %n implies 

(5.33) % n+ nf =[M f1=0, 

establishing the claim. 
Since #6,Xn < n, we use the claim above and the fact that S- SI ,(Q) to find 

(5.34) r(n,g, 'o) < r( sup 
fE %fn ker lt, 

?< sup l1Sf l = r(6Ln-n*,1 S,?) = r(n + n*,S,'YO), 
fe e.t-nkerX,1,+ n 

the last by the optimality of 9+ El 
We wish to examine the effects of increasing regularity when i0 is the unit 

semiball of a Sobolev space. Recall that Z is a Hilbert space, and that S: Hr(fl) Z-* 
is a bounded linear transformation. Choose s > r, and let E: Hs(Q) Hr(R2) 
denote the (compact) inclusion injection, as in Section 4. 

LEMMA 5.4. Hs(Q2) is a subspace of Hfr(Q), and the inclusion injection E: HS(9l) 
Hr(2) is compact. 

Proof. To show that Hs(f2) is a subspace of If(2), letf e Hs(2). Thenf e Hs(R) 
c Hr(Q), and (f,p)s = 0 for p e Ps- 1(s2). Now for any p e Pr- ((Q), we have 
D'p = 0 forI,I> r. So 

(5.35) (f,P)r = (f,P)s- E (D1Lf,DILp)o = (f,p s) = 0, 
r<ItLI Is 

sincep e Pr-1(2) C Ps-I(f) andf E fs(f2) = Ps 1(62) . Hencef E HT(2). 
We now show that E is compact. Let {fJ)jt1 C fHS(Q) be bounded, say 

(5.36) Ifi s < M (i > 1). 

Sincef1 E Hs((Q) = Ps (2)' we find 

(5.37) lIf1lI s inf llf + plls = llfjlls < Clfjis < CM, 
pE I (I2) 

where the first inequality follows from the equivalence of I * Is and 11 *j1 over Hx(u). 
Since r < s, the Kondrasov lemma yields g E Hr(g2) and a subsequence (jk) such 
that fJA - g in Hr(gl). Since H r(s) = HT(Ql) ( Pr (Q2), there exists f E H'(9) and 
p e Pr (2) such that 

(5.38) g = f + P. 
We claim that f, --* f in Hr(Q). Indeed, p E- Pr ,(Q) implies 

(5.39) Ifkf lr IfJk g Pir lfj - gIr + IPIr 

s k ge k otgbr < llfja a gllre 
so that fJk --,g in Hr( Q) establishes the claim and the lemma. CO 
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Let S = SE as in Section 4. Then the commutative diagram 

Hr(S2) , KS 

(5.40) E # - 

S 
Hs(Q) 

induces a diagram 

Hr(Q) z 

(5.41) E ? 

fts~~ Hs (Q) 

where S and S are the restrictions of S and S to Hr(Q) and HS(Q), respectively (see 
(5.13)). We claim that the diagram (5.41) commutes. Indeed, let f E Hs(Q). Then 
S - SE yields 

(5.42) Sf-=f= SEf = Sf. 

On the other handf E Hs(Q) c H'(Q), so that (5.42) implies 

(5.43) SEf = Sf= Sf= Sf. 

Thus SE = S, i.e., the diagram (5.41) commutes, as claimed. 
We now are ready to discuss how the behavior of the optimal error changes when 

regularity is increased. Let s > r, let n* and n*, respectively, denote the indices for 
the problems (S,S?RHr(Q)) and (S,6.BHs(Q)), let 

(5.44) e(n,r):= r(n,S,613Hr(S2)), 

and let 

(5.45) e(n,s):= r(n,9,6d3Hs(Q)). 

We then have the following modification of Theorem 4.3: 

THEOREM 5.1. Precisely one of the following statements holds: 
(i) S is bounded, but not compact, in which case, there exists E> 0 such that 

lim e(n,r) = e 
?I -P 00 

while 

lim e(n,s) - 0, 
,, - 0C 

or 
(ii) S is of finite rank, in which case, there is an integer nO such that 

e(n + n*,s) = e(n + n*,r)=O forn > no, 

or 
(iii) S is compact, but not of finite rank, in which case, 

lim e(n,r) = lim e(n,s) = 0 and lim ( - n-s )-0. 
?I --- * 0o n --* oo n--ooo e(n + n*,r) 
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Proof. Using (5.44) and Lemma 5.3, we have 

(5.46) e(n + n*,r) = r(n + n*,S,cJ3Hr(i)) = r(n,S',BHf('r)), 

while (5.45), Lemma 5.3, and (5.41) yield 

(5.47) e(n + n*,s) = r(n + n*,S,'@3Hs(S2)) r(n,S,B's(r2)) 

= r(n, S,BE.s( if )). 

The result now follows from (5.46), (5.47), Lemma 5.4, and Theorem 4.2. O 
As a corollary, we can give sufficient conditions for Theorem 4.3 to hold: 

COROLLARY 5.1. Suppose that either 

(5.48) n* = n* 

or there is a y > 0 such that 

(5.49) e(n + l,r) > ye(n,r) 
for all n sufficiently large. Then for any compact S, not of finite rank, we have 

(5.50) lim e(n,s) - 0 El 
n-*oo e(n,r) 

Note that (5.48) or (5.49) holds in all of the examples mentioned in Section 1. The 
condition (5.49) tells us that the problem (S, qiHr(2)) cannot be "too easy", i.e., the 
error should decay no faster than geometrically. 

On the other hand, we now show that a result like (5.50) cannot hold for all 
problems. 

THEOREM 5.2. For any ,u E [0, oo], there exists an S for which 

li e(n,s) 
n-oo e(n,r) 

and if , = x, the limit can go to infinity arbitrarily fast. 

Proof. Setting m = n* - n*, we may use (5.46) and (5.47) to find 

(5.51) l,m e(n,s) i r(n,SEm,BHs()) 
n-oo e(n,r) n-oo r(n + m,S,BHr(2)) 

Now let X = H(s2), Y = Hr(Q), and E = E in the notation preceding Theorem 3.2. 
Let S: Y --Y be an injection. Let Z = Pr - 1(2) x HI1(2) with norm 

(5.52) (s) := ii112 + Ii2 v( E) E Z. 

Finally, S: Hr(R) -* Z is given by 

(5.53) Sf: = 

wheref = f + p as in (5.16). 
By construction, S is injective, so that (2.16) yields 

(5.54) n* = dimPr I (f2) 
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and 

(5.55) n* = dimP,1_ (n). 

Hence m > 0. Now finally choose S = A'72, where A is defined as in Theorem 3.2, 
with ,1 replaced by 2. Then 

r(n,SE.BH'(Q)) [ A (E*AE) 11/2 
(5.56) lrm lin = i rn - = -. 

)i-oo r(n + m,S,BHr(2)) [,* 11 J+M(A) 

The theorem now follows from (5.5 1) and (5.56). El 
Hence, the penalty for increasing regularity may be arbitrarily great in the 

seminormed case. 

6. Complexity Results. In this section, we translate our results on optimal error 
behavior into results on computational complexity. We show (roughly speaking) that 
both in the normed and seminormed cases, increasing regularity improves complex- 
ity; however, there are problems for which improvement means only that the 
complexity gets no worse. 

The model of computation will be that specified by Chapter 5 of [6]. That is, if H 
is a Hilbert space, evaluation of af and f + g (a a scalar, f, g E H) and evaluation of 
a linear functional on H have finite complexity. We let c denote the complexity of 
evaluating a linear functional; we assume that evaluation of af and f + g have unit 
complexity, in order to normalize the measure of complexity. We generally would 
expect c >> 1. 

We first consider the normed case. Let 

(6.1) comp(e,r):= inf comp(q)), 

where comp(pq) denotes the complexity of the algorithm (p for the problem 
(S, BH r(2)) and the infimum is taken over all such algorithms 9p for which e ( p) E. 

Similarly, 

(6.2) comp( E,s):= inf comp((p), 

where the infimum is now taken over all algorithms 9p for the problem (S,BH'(Q)) 
for which e(qp) < E. Define the e-cardinality numbers by 

(6.3) m(e,t):= infN(e,t), 

where 

(6.4) N(c,t):= (n E Z-': r(n,BH'(2)) < e) 

for t = r and t = s. (That is, m(e,t) is the smallest integer n such that the nth 
minimal radius of information is at most E for data in the unit ball of H'(Q).) Then 
Theorem 3.4.2 and Lemma 5.2.2 of [6] yield 

(6.5) comp(e,t) = (c + a,)m(e,t) - 1, 

where a, e [1,2]. 
We first discuss the behavior of the e-cardinality numbers. 
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THEOREM 6.1. Let s > r. 
(i) For any E > 0, and any solution operator, m(, s) < m ( E, r). 

(ii) There exists a solution operator for which 

lir m (E,Ss) -1 
F-O m(e,r) 

Proof. (i) follows from the first statement in Theorem 4.2. To see (ii), let YY2,y2 
be the orthonormal eigenfunctions of E*E corresponding to eigenvalues e2 ? 2 > 
... > 0. Recall that En cn- for u = (s - r)/N. Now define S: H r(f) Hr(g2) 
by 

(6.6) SEyn = e-1nEyn. 

(Recall that {Ey,,Ey2,... ) is complete in Hr( 2).) Then Xk(S*S) = e2-"' and 
X,1((SE)*(SE)) [cn-e(l-n)12, i.e., 

(6.7) r(n,BHr(E2)) = e-" and r(n,BHs(Q)) cn-e-n. 

We then have 

(6.8) m(e,r) = In- and m(e,s) in-, 

completing the proof of the theorem. O 

We then have 

THEOREM 6.2. Let s > r in the normed case. 
(i) For any solution operator, 

comp(e,s) < (c+a. )comp(E,r) + as r V' E > 0, 
ck4 ar + ar 

so that, if S is not of finite rank, 

lim sup comp(, s ) c C + as 
e- 0 comp(e,r) c + ar 

(ii) There exists a solution operator for which 

lim comp(e,s ?) = c + as 
e -0 comp(e,r) c + ar 

Proof. Immediate from (6.5) and Theorem 6.1. O 

Since we generally expect c >> 1, the first part of Theorem 6.2 tells us that 

(6.9) lim sup comp(,s) c + 2 1 
e-'O comp(e,r) c + 1 

while the second part of the theorem tells us that there is a problem for which 

(6.10) lim comp(e,s) > c + I 1 
e- O comp(E,r) C + 2 

We may roughly paraphrase (6.9) by saying that increasing regularity improves 

complexity; (6.10) tells us that there are problems for which "improvement" means 

only that the behavior of the complexity does not get worse. 



90 ARTHUR WERSCHULZ 

We now consider the seminormed case. Let 

(6.11) comp(e,r):= inf comp(q ), 
IF 

where comp(p) is the complexity of the algorithm qp for the problem (S, 6JH r(g2)) 

and the infimum is taken over all such algorithms qT for the problem (S, 3Hr( 2)) for 
whlich e(rp) < e. Similarly, 

(6.12) comp(e,s):= inf comp(p), 
IF 

with the infimum now being taken over all algorithms qp for the problem 
(S, NHS(O2)) for which e(p) < e. We now define the e-cardinality numbers by 

(6.13) m(e,t):= infN(e,t), 

where now 

(6.14) N(e,t):= (n E- Z+: r(n,63kH'(Q)) < e) 

for t = r and t = s. Then (as in the normed case) there is an a, E [ 1, 2] for which 

(6.15) comp(e,t) = (c + a,)m(e,t) - 1 

for t = r and t = s. 
We first discuss the behavior of the e-cardinality numbers. 

THEOREM 6.3. (i) For any solution operator, there exists e0 > 0 such that 

(6.16) m(e,s) < m(e,r) + n* - n* Ve e(O,EO], 

and so if S is not of finite rank, 

(6.17) lim sup 1(E. ) 

0-. m (e,-r) 

(ii) There exists a solution operator for which 

lim m(e,s)! 1 
f-O m(e,r) 

Proof. (i) By Theorem 4.2, limr- -[r(n,BHs(Q))/r(n,BHr(Q))] 0. Hence there 
is an no E Z+ such that 

r(n,B]s(2)) < r(n,BH'r(2)) Vn > no, 

so that Lemma 5.3 yields 

(6.18) r(n + n*,6,Hs(Q)) < r(n + n*,6Hr( q)) Vn > nO. 

Let 

Eo = r(nO + n*, BHr( Q)). 

To prove (6.16), let e E (0,- ]. If N(e,r) is empty, the right-hand side of (6.16) is 
infinite, so that (6.16) is trivial. So, let n E N(e, r). Since 

r(n,@H r(S2)) < e < E = r(no + n*,6J3Hr(S2)) 

and r(.,BHr(S2)) is nonincreasing, we have n > nO + n*, i.e., 

(6.19) n -n* > n.o 
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Using (6.19), and replacing "n" by "n - n" in (6.18), we have 

r(n + n* - n*,1,@Hs('2)) < r(n,',!Hr(g2)) < 

so that n + n* - n* e N(E,s); so, 

m(E,s) = infN(E,s) < n + n* -n*. 

Since n E N(E, r) is arbitrary, (6.16) follows. 
To prove (6.17), let S not be of finite rank. Then limE_Om(e,r)= oo, so that 

(6.16) yields (6.17). 
To prove (ii), let yl,y2,... be the orthonormal eigenfunctions of E*E correspond- 

ing to eigenvalues El > 2> *. > 0. Again en cn-for ,u= (s-r)/N. Let S: 
H r(2) - H r( ) be such that 

(6.20) SEyn = e Eyn, 

and let S restricted to Pr_ () be the zero operator. Then as in the proof of Theorem 
6.1 we have 

(6.21) r(n,,Hr(g)) = e-" and r(n,jJHs(Q)) cn-e- 

so that 

(6.22) m(e,r) = ln! and m(e,s) ln 

completing the proof of the theorem. o 
Remark 6.1. Note that Theorem 6.3 gives an asymptotic result, i.e., onie for all 

sufficiently small e. One can also prove the nonasymptotic result 

(6.23) m(EIl ]J,s) < m(E,r) + n* - n* Ve > 0. 

When jEll < 1, (6.23) implies that (6.16) holds for all e > 0. However, it is possible 
to choose 2 so that JII]J > 1. (For example, let r = 0, s = 1, N = 1; then set 

;= (-a, a) with a > i.) In this case, (6.23) does not imply that (6.16) holds for 
all e > 0. In fact, when 110I > 1, one can construct a solution operator for which 
(6.16) does not hold for all e > 0. 

To see this, let S: H r(2) -. H r() be given by 

SEyn = an Eyn, 

with a, I >2> . . . > 0 and yn as in the proof above, and define S to be zero on 
Pr_ 1(). Then 

r(n,BHr(Q)) = an+ I and r(n,BHfs(0)) = an, wEn+ I 

so that II II > I yields 

r(O,BHfs(9)) = a,e, = all EI = 1l jr(0,BHr(Q)) > r(0,BHFr(Q)), 

i.e., Lemma 5.3 yields 

(6.24) r(n*,1Hs(Q2)) > r(n*,!Hr(U)). 

Now let 

E=r(n*,6JHr(g)). 

Then 

(6.25) m(E,r) = n* 
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while (6.24) yields r(n*,tl Hs(2)) > E, so that 

(6.26) m(E,s) >n*. 

From (6.25) and (6.26), we find 

m(e,s) > m(c,r) + n* - n*. 

So, (6.16) cannot hold for all - > 0. O 
We may then use (6.15) and Theorem 6.3 to prove 

THEOREM 6.4. Let s > r in the seminormed case. 
(i) For any solution operator, there exists c0 > 0 such that 

corn ~~ ( + a., 
comp' ) < ( + a Jcomp(c,r) + (c + a,)(n* - n*) 

c + ar 
+ ' + a V t E= (O, EJ) 

so that for S not of finite rank, 

limsup comp(c,s) c + 

F &()Icomp(E,r) c- + ar 

(ii) There exists a solution operator for which 

comp(c.s) c + a, 
F-0 comp(c, r) -' 

+ ar 

Since we generally expect c >> 1, we would expect (c + a3,)/(c + ar) 1. Hence 
this theorem tells us that increasing regularity improves complexity, although there 
are problems for which the improvement means that only the complexity gets no 
worse. 

7. Open Questions. In this paper, we have examined the role of regularity in 
determining complexity. Here, we consider some open problems in this area. 

We first consider the normed case. We saw that 

lim e(n,s)/e(n,r) = O when r < s. 
11- 

Is there any way of measuring how fast the ratio tends to zero, given (say) r, s. and 
some knowledge of the solution operator S? There appears to be no way of 
extending the proof in this paper (which uses a compactness argument) to find such 
a rate. 

It would also be reasonable to consider problems defined over the Sobolev space 
Wr P(2). In this case, it is easy to see that d(n,s) < d(n,r) for all n when s > r, 
where d(n,t) is the nth minimal diameter of information for data in BW' P(Q) (see 
[6, p. 11]). Is it still true that lim,,-,, e(n,s)/e(n,r) = O? The proof of such a 
statement would follow from a theorem on ratios of n-widths, similar in flavor to 
Theorem 3.1. Such a theorem ("increasing compactness speeds up the decay of 
n-widths") is plausible, but its proof could not use the eigenspace techniques of 
Section 3. 

We now consider the seminormed case. Although we know that there exist 
problems for which increasing regularity is harmful (in the sense of Theorem 5.2), we 
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know of no naturally-occurring problem for which this is the case. Is there a 
noncontrived problem for which increasing regularity worsens the asymptotic behav- 
ior of the optimal error? 

It is also of interest to find classes of problems for which increasing regularity 
(again, in the seminormed sense) improves the asymptotic behavior of the optimal 
error. For example, if we look at problems defined over 64WHo(Q), the Friedrichs 
inequality allows us to use the results in Section 4, so that 

lim e(n,s)/e(n,r) = 0. 
t7- 00 

Corollary 5.1 gives other conditions which are sufficient to yield this result. What are 
necessary and sufficient conditions for increasing seminorm regularity to improve 
the asymptotic behavior of the optimal error in the seminormed case? 

We next note that the strongest statement that one can make is (roughly) that 
increasing regularity does not make the complexity worse; this is because there exist 
problems for which increasing regularity leaves the complexity unchanged. On the 
other hand, for many naturally-occurring problems, we have 

lim comp(c,s) = 0 wheneverr < s. 
'-. comp(c,r) 

It would be useful to characterize the problems for which this holds, while an even 
more ambitious task would be characterizing the problems for which the complexity 
ratio goes to zero as a given function of e. 

Finally, we point out that this paper only deals with linear solution operators. 
Does increased regularity lower complexity when the solution operator is nonlinear? 
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